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Experimental low-angle X-ray intensity profiles and their related one-dimensional correlation functions 
have been derived for low density polyethylene and compared with those calculated from various one- 
dimensional models for stacks of lamellae. Three main types of model are considered. The first type 
consists of 'effectively' infinite, statistically uniform stacks in which the amorphous and crystallite 
thicknesses follow various combinations of Gaussian and exponential distribution functions. The 
second type consists of statistically uniform stacks with a finite size of N lamellae. The third type 
introduces a dispersity between the stacks, specifically involving a variability in the local mean crys- 
tallinity. The experimental curves agree better with the last two types of model. Of these, the 
variable stack model is considered to be the most attractive and is interpreted in terms of phase sepa- 
ration during crystallization. 

INTRODUCTION 

Small-angle X-ray scattering from sedimented stacks of 
solution grown polymer crystals can give up to four orders 
of diffraction. This is a consequence of the low dispersity 
of the thicknesses of the alternating crystalline and non- 
crystalline 'amorphous' regions making up the stacks. In 
such cases, the application of Bragg's law to the first order 
diffraction peak is accepted as giving a good measure of 
the average periodic repeat distance of the structure. The 
diffraction profile can also be predicted reasonably with a 
simple one-dimensional model. In contrast to this, bulk crys- 
tallized polymers rarely give more than two orders of diffrac- 
tion and many, such as low density polyethylene (LDPE), 
only give one broad, first order peak. In such cases it is 
possible that the Bragg 'long period' can be considerably dis- 
torted from the true average period of the structure 1'2. 
Furthermore, it becomes more of a problem to use one- 
dimensional models to decide on the nature of the dispersity 
causing the broadening of the diffraction peak. 

In this paper we are concerned with the interpretation 
of such broad diffraction peaks and in particular will be 
comparing various one-dimensional models with the diffrac- 
tion patterns from LDPE. There have been several papers on 
the analysis of low-angle X-ray diffraction although relatively 
few have been specifically concerned with systems §iving 
very broad peaks. More recently, Kilian and Wenig have 
studied low crystallinity (40%) ethylene copolymers 
Str6bl and Mtiller 4 have given a detailed analysis of a curve 
from LDPE. Brown e t  al. have analysed fairly broad diffrac- 
tion profiles from poly(tetramethylene oxide) s. 

In the literature there have been two main approaches to 
comparing experimental results with the predictions of theo- 
retical models. The more obvious is to compare directly the 
intensity profiles 4'6'7. The other is to use the device first 
used by Vonk and Kortleve s'a'9 of comparing the one- 
dimensional correlation functions. Most authors have used 
one or other of the approaches, but not both at once. The 
two approaches tend to emphasize different aspects of the 
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structure. Ideally, they should be equally valid if the whole 
of reciprocal space and real space are defined. In practice, 
limitations such as experimental cut-offs are unavoidable 
and it is possible to obtain an incomplete viewpoint by con- 
sidering only one approach. For this reason we have there- 
fore chosen to use both methods of comparison in our 
analyses. 

In their studies, Vonk and Kortleve a'9 derived their 
theoretical correlation functions by a self-convolution of 
their model structures and then compared these with ex- 
perimental correlation functions obtained by the Fourier 
transformation of the corrected intensities. In the present 
paper both theoretical and experimental correlation func- 
tions will be derived using the Fourier transform method. 
While this has the advantage that any computational inac- 
curacies will be identical for both sets of curves, it has the 
slight disadvantage that the choice of fluctuation statistics 
in the models is restricted to those that yield analytical 
solutions for the intensity expressions. 

Certain basic assumptions must be made when setting up 
a one-dimensional model for stacked lamellar systems. A 
good account of the nature of these is given in Ruland's 
recent analysis of the problem ~°. In the present paper we 
make the basic assumption that the lamellar stacks are 
effectively of infinite lateral width, so that we only have 
to deal with the one-dimensional variation of electron den- 
sity normal to the lamellar planes. This variation will be 
assumed to follow a two-phase (crystal/amorphous) model 
where there is a sharp density transition at the crystal/ 
amorphous interface. We will assume that the statistics of 
the density fluctuation along the normal of a stack can be 
described by Hosemann's general model n in which the thick- 
nesses of the crystal and amorphous layers vary independently 
of each other according to prescribed distribution statistics 
(It should be noted that this is distinct from Hosemann's 
one dimension paracrystal model2'll'~2.) Using this general 
framework for an individual lamellar stack, three types of 
model will be examined. 

First, will be considered the simple case where the system 
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can be represented by a single stack of lamellae, where the 
number of lamellae is sufficiently large that the stack can 
effectively be considered to be of infinite height. The cor- 
responding real sample would be composed of many such 
stacks which would be statistically identical so that any one 
stack can be taken as representative. This basic simple 
model has been extensively used in previous investigation z'%~2. 
Here it will be emlmerated for cases where the distribution 
statistics describing the crystal and amorphous thicknesses 
are various combinations of symmetrical Gaussian distribu- 
tions and asymmetric exponential distributions. 

The second type of model is a more generalized form of 
the first and considers the case where the number of lamellae 
in a stack, N, is no longer large enough to be effectively 
infinite. Among other effects this introduces a broadening 
of peaks due to the finite lattice size. Kilian and Wenig 3 
have recently successfully used the additional parameter, N, 
to match experimental curves of highly disordered copoly- 
met systems. 

In the third type of model, we will again return to 
'infinite' stacks, but will now introduce a longer range in- 
homogeneity in which there are fluctuations between stacks 
as well as fluctuations of the lamellar within the stacks. The 
observed intensity will no longer be given by a single rep- 
resentative stack but will be the weighted average of the in- 
tensities of all the stacks. This is the type of model that has 
been proposed by Strobl and Muller 4 from their measure- 
ments of LDPE. There are many possible ways of introduc- 
ing a stack dispersity of this kind. In this paper we will 
only consider one specific model where local crystallinity 
varies from stack to stack, but where the average amorphous 
thickness within each stack is kept constant, i.e. where the 
average crystalline thickness will vary in a predetermined 
correlated way from one stack to another. Although the 
details of this model are somewhat arbitrary, they were 
chosen to explore the possibilities of stack variability rather 
than as a precise postulation of the actual structure. 

Tire experimental work of Vonk 13 has shown that the 
assumption made above, of a sharp interface between phases, 
is not upheld in practice and that transition regions of 
about 10 ~, are often found. These finite transition regions 
affect the shape of the final tail of the intensity curve and 
the initial curvature of the correlation function. In order to 
eliminate this discrepancy between experimental and theo  
retical curves, we have made a small modification to our 
experimental data. The data was analysed by the methods of 
Ruland 14 and Vonk ~3 to calculate the magnitude of the 
transition thickness. This value was then used to calculate 
the small first order correction factors needed to convert the 
original data into the data that would be predicted with a 
sharp transition. Application of these factors then enable 
the experimental and theoretical curves to be compared. 

GENERAL FUNCTIONAL RELATIONS 

In the theoretical one-dimensional models, one sets out to 
compute the scattered intensity [(s), per unit volume of 
lamellar stack correctly oriented with respect to the main 
beam. The stacks within experimental samples will be ran- 
domly oriented with respect to the beam. Providing the 
lateral width of the lamellae within the stack is nmch larger 
than the "long period' normal to the lamellae, then the one 
dimensional intensity l(s) can be related to the observed 
powder type intensity profile i(s) of a randomly oriented 
system by: 

l(s) = 4ns 2 i(s) (1) 

where 

2sin 0 20 
S -  - - 4 - _ _  

X X 

at low angles and 20 = angle between scattered and incident 
rays. 

Although in principle I(s) should contain all the 'informa- 
tion' of the lamellar periodicity, one can often get a more 
direct impression of the density variation in real space by 
following Vonk and Kortleve a'9 and deriving the one dimen- 
sional correlation function 7(r), using the Fourier 
transformation: 

o o  

7(r) = f I(s)exp{2nisr} ds 

o 

(2) 

The correlation function can also be defined directly in 
real space from the density variation along the lamellar nor- 
mal by the convolution integral: 

0o 

7(r) = f rT(u)rl(r- u)du 

1 1 =  - -  ~ 

where r~(u) is the deviation in electron density from the 
average density of the sample as a whole. 7(0 is therefore a 
measure of the probability of finding the density to be the 
same for two points a distance r apart. Where there is a 
periodic structure, as in lametlae systems, 7(r) can be ex- 
pected to show a maximum close to values o f r  that are 
equivalent to the average repeat period. The position of this 
maximum can be interpreted as the most probable repeat 
distance rather than the precise number-average repeat dis- 
tance. Typical examples are shown in Figures 3 and 5. 

In this paper the computation of both the theoretical and 
experimental correlation functions is based on equation (2) 
and uses the same discrete fast Fourier transform analogue. 
This splits I(s) into 256 discrete points covering the equiva- 
lent in space of about 12 orders of reflections and produces 
128 discrete points for 7(r) covering a range of r-space of 
about 10 periodic repeats. 

Before the experimental I(s) can be transformed, it is 
necessary to introduce two modifications similar to those 
used by Kortleve and Vonk 9 to account for the high and 
low angular regions where data is not available. The final 
tail was fitted to a Pored-type 1/s 2 relationship, while the 
initial region up to the backstop was replaced by a function 
of the form s 2. 

In order to aid the comparison of theory with experi- 
lnent, we have chosen to characterize the main features of 
l(s) and 7(r) by measuring the following parameters. 

From l(s) curves: 
L1 = apparent Bragg long period = reciprocal of peak 

position 
Wl/2 = ratio of (half height width of peak)/(position of 

peak) 
t:rom 7(r) curves: 
L2 = position of first positive maxima 
Y l = depth of first negative peak 
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Basic model for lamellar stacks 

Y2 = height of first positive peak 
The parameters WI/2, Yl and Y2 are crude measurements of 
the curve shapes and can be used in initial comparisons as 
simple matching criteria. 

BASIC MODEL FOR A STACK OF LAMELLAE 

The variation in density through a stack along the lamellar 
normal will be assumed to be of the form in Figure I in 
which the electron density varies with a rectangular profile 
between the crystalline value and amorphous value. The 
crystalline thickness, amorphous thickness and total periodic 
thickness of the/th lamella will be Y/, Zy and X/ respec- 
tively. We will use Hosemann's xt most general model of 
this form in which the thicknesses Y/and Z/will statistically 
vary independently of each other and from one lameUa to 
another. H(Y) will be the normalized distribution function 
for the crystalline thicknesses and h(Z) will be the corres- 
ponding independent distribution for the amorphous thick- 
ness. The number-average crystalline thickness will be: 

Y= f H(Y).YdY 

and similarly: 

= f h(Z).ZOZ 

Zj, then the standard deviation of the periodic length )(1. will 
be: 

o x = Oz2)1/2 
If a stack o f N  lamellae is now oriented into a diffraction 

position, which, in the limit of low-angle scattering, means 
that the lamellar normal is arranged perpendicular to the 
incident beam, Hosemann u has shown that the observable 
intensity profile in the plane of the normal and incident ray 
will be: 

I(s) =/s  (s) + lc(s) (3) 

Oc - PA) 2 I1 - Fy 12(1 - IFzl 2) + I1 - Fzl2(1 - IFy 12) 
IB(S) - 

47r2s2X I1 - FyFz 12 

(Pc - PA) 2 Re ( Fz(1 - Fy)2(1 - (FyFz)N) 
= (11 } 

(4) 

where Fy and Fz are Fourier transforms of the distribution 
statistics e.g. 

~ y = f H(Y)exp(-2.isY)dY 

When, as in the infinite stack type of models N becomes 
large enough to be effectively infinite, the term Ic becomes 
negligible so that the observed intensity is given entirely by 
I B. When N is reduced as in the finite stack type of models, 
Ic can no longer be neglected. It has the effect of broaden- 
ing the diffraction peak and introducing a central scattering 
component around the main beam u. 

The expression (3) can be easily evaluated if the distribu- 
tion functions H(Y) and h(Z) are chosen so that their 
Fourier transforms, Fy and Fz, reduce to simple analytical 
expressions. In the following sections two types of distribu- 
tion function that are amenable to this analysis will be 
used. The first, using a Gaussian distribution, will be con- 
cerned with the properties of symmetrical distributions. The 
second, using a form of exponential distribution, will be 
used to explore the effects of asymmetry. 

SINGLE INFINITE STACK MODELS 

The overall number-average long period X = Y + Z and the 
volume crystallinity of the system ~ = Y/X. 

The width of the distribution functions can be charac- 
terized by the standard deviations: 

ay 2= f H ( Y ) ( Y -  y ) 2 d y  

= f h(z)(z- g) az 

Since there is no correlation between any particular Yi and 

Symm etric distributions 
Several past studies on one-dimensional lamellar models 

have shown that all symmetric distributions of correspond- 
ing width give similar results and that the Gaussian distribu- 
tion is typical 9'12. Therefore let us take H(Y') and h(Z) to be 
normalized Gaussian distributions, e.g. 

1 ( y _  ?)2 
H I ( Y ) -  Oy(2rol/2 exp 20)' 2 

where Y and Cry are the mean and standard deviation. Simi- 
larly for h 1 (z). (Strictly a Gaussian will give a positive 
probability for negative values of Y in the negative tail. 
This unrealistic feature is trivial for Oy < 0.5 Y and will be 
ignored). The corresponding Fourier transforms have the 
form: 
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Table I Parameters of infinite stack model with Gaussian statistics 

Oy 02 0 x L1 L2 Yl Y2 W1/2 

0.5 0.212 0.212 0.3 1.12 1.10 0.36 0.18 0.50 
0.5 0.283 0.100 0.3 1.12 1.07 0.42 0.18 0.51 
0.5 0.229 0.025 0.3 1.12 1.03 0.48 0.18 0.52 

0.5 0.0707 0.0707 0.1 1.00 1.00 0.77 0.69 0.06 
0.6 0.0832 0.0551 0.1 1.00 1.00 0.65 0.67 0 06 
0.75 0.0947 0.0316 0.1 1.00 1.00 0.35 0.59 0.06 

0.5 0.141 0.141 0.2 1.03 1.02 0.54 0 38 0.26 
0.6 0.166 0.111 0.2 1.03 1.02 0.51 0.36 0.26 
0.75 1.89 0.063 0.2 1.03 1.02 0.32 0.26 0.26 

0.5 0.212 0.212 0.3 1.12 1.10 0.36 0.18 0.50 
0.6 0.250 0.167 0 3 1.12 1.10 0.34 0.17 0.53 
0.75 0.284 0.095 0.3 1.10 1.09 0.26 0.11 0.65 

0.5 0.283 0.283 0.4 1.30 1.25 0.24 0.094 0.82 
0.6 0.333 0.222 0.4 1.28 1.23 0.24 0.086 0.84 
0.75 0.379 0.126 0.4 1.21 1.18 0.19 0.056 1.2 

by = exp(-2rr2s 2 o2)'exp(-2rr i s Y  ) 

These can be substituted in equations (4) to give the in- 
tensity expression I(s). 

It is convenient to evaluate this expression by making X= 
1.0, so that the independent variables are then Oy, o z and 
crystallinity ~. For the case of perfect regularity (i.e. ay = 
o z ~ 0), one would then expect from Bragg's law that the 
first order diffraction peak of I(s) would occur at s = 1.0. 
Similarly one would expect 7(r) to exhibit a positive corre- 
lation peak at r = 1.0. As the distributions are made broader 
the peaks in both functions will distort and shift from these 
positions. 

Table 1 lists how the main features of l(s) and 7(r) vary 
with selected combinations of Oy, o z and Cp. 

The first group of samples in this Table show the effect 
of various combinations of Oy and o z keeping ¢ and the 
overall standard deviation o x fixed. The second group of 
results show different combinations of ~ and o x , such that 
Oy and Oz are related by o y / Y  = o z / Z ,  i.e. relative deviations 
are identical for crystalline and amorphous thicknesses. 

Not surprisingly, the main features of the curves are de- 
pendent on more than one model parameter, especially as 
the distributions are made broader. However the following 
trends are worth noting, some of which are well known. 

(i) The half-width 1411/2 is mainly dependent on the over- 
all deviation o x. This result is well known from the work of 
nosemann~l. 

(ii) For ¢ in range 0.4 to 0.6, the correlation peak heights 
Yl andy2 are insensitive to changes in ¢. This was first de- 
monstrated by Kortleve and Vonk 9. 

(iii) If q~ and o x are kept constant, then Y2 and WI[ 2 are 
almost invariant to changes in the relative sizes of Oy and Oz. 
Providing also that Oy and 0 2 are kept reasonably balanced, 
then y 1 also becomes relatively insensitive. If  either Oy or 
o z is made very small compared with the other, thenyl  
increases. 

(iv) As expected, L 1 and L2 are closely related to each 
other. When o x is increased, both peaks in l(s) and 7(r) be- 
come distorted so that L 1 and L 2 move to positions greater 
than unity. For o x > 0.3, this distortion is quite significant. 

Asymmetr ic  th&kness distribution 

Asymmetric distributions have been explored in the past 
particularly to look for effects of asymmetry on the distor- 
tion of the diffraction peak. Tsvankin 6, used a simple expo- 
nential distribution: 

1 
H ( Y )  = - - e x p ( - Y / o y )  

Oy 

This introduces some confusion since the number-average 
thickness is then identical with the standard deviation Oy 
so that the effects of mean thickness cannot be separated 
from those due to dispersion. In the present study this is 
overcome by the minor modification of displacing the abs- 
cissa a distance of Y0- Thus, 

, (  H2(Y) = - -  exp 
Oy. 

(Y-Y0)/- -  for Y ~ Y o  
Oy 

= 0  for Y <  Y0 

In this case, the standard deviation = Oy, and the number 
average thickness Y = YO + Oy,. H2(Y) then reduces to the 
Tsvankin case when Y0 = 0. The amorphous distribution 
h2(Z) is also defined by a similar expression. As before, the 
overall standard deviation will be defined as Ox. = (e2 ,  + 
o2-~ 1/2 and the number-average period X = Y + Z. The 

Z ~ J  

Fourier transforms of these distributions have the form: 

1 
Fy - 1 + 27risoy. exp(-27risYo)  

It is convenient to discuss the results obtained by substitut- 
ing these expressions in equation (4) later, together with the 
results of the next section. 

Mixed thickness distribution 

A useful combination of the symmetrical and asymmetri- 
cal distributions can be obtained by using a distribution 
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Table 2 Parameters of infinite stack model with mixed Gaussian and exponential statistics 

Gaussian Exponential 

OF 0 z OF. Oz * 0 X L1 L2 Y l Y2 WI I 2 

0.5 

0.5 

0.5  

- - 0.141 0.141 0.2 0.97 
0.1 0.1 0.1 0.1 0.2 1.01 
0.141 0.141 -- - 0.2 1.03 

- - 0 .212  0 .212  0.3 0.93 
0 .15 0 .15 0 .15  0 .15 0.3 1.08 
0 .212 0 .212  - - 0.3 1.12 
0 .212  - - 0 .212  0.3 1.04 
0 .283 - --  0.1 0.3 1.11 
0.1 - - 0 .283 0.3 0 .93 
0 .299 0 .025  - - 0 3 1.12 

- - 0 .283  0 .283  0.4 0.93 
0.2  0.2 0.2 0.2 0 .4  1.22 
0 .283 0 .283  -- --  0 .4  1.30 

0.95 0.61 0.42 0.22 
0 .99 0.56 0 .38 0 .25 
1.02 0.54 0.38 0.26 

0 .90 0 .40  0 .20  0.51 
1.03 0.36 0.17 0.53 
1.10 0 .36 0.,18 0 .50 
1.00 0.38 0.18 0.52 
1.04 0.43 0 .18  0 .52 
0 .92 0 .45 0.24 0.41 
1.03 0.48 0.18 0.52 

0.85 0 20 0.06 - 
1.12 0 .22 0.07 - 
1.25 0.24 0.09 0 .82 

Table 3 Parameters for finite stack model 

~b (7 x N L1 L2 Yl 1'2 wl/2 

0.5 0.2 =~ 1.03 1.02 0 .58 0 .38  0.26 
100 1.03 1.02 0.58 0 .38 0.26 

10 1.03 1.02 0 .56 0.33 0 .29  
5 1.05 1.04 0 .52 0 .27 0 .34 
2 1.18 1.12 0 .50 0.19 0.62 

0.5 0 .25  oo 1.08 1.06 0.50 0.26 0.37 
5 1.10 1.08 0 .45 0 .18 0.53 
2 1.23 1.16 0.43 0.11 0 68  

0.5 0.3 = 
5 
2 

1.12 1.10 0.43 0.17 0 .50 
1.16 1.13 0 .40  0.1 2 0.64 
1.30 1.23 0.38 0.09 0.77 

of transform thus allows one to explore all types of combina- 
tion of symmetrical and asymmetrical behaviour. Examples 
of the main features of I(s) and 7(r) for this combined model 
are shown in Table 2. 

The most obvious differences between a pure exponential 
and pure Gaussian seen in this Table is that the exponential 
case causes a decrease in L 1 and L 2 as the overall deviation 
o x is increased. This general effect of asymmetrical distribu- 
tions was first noted by Rheinhold et al. 1. Mixtures of expo- 
nential and Gaussian statistics in various combinations give 
unspectacular hybridized behaviour. 

Of particular importance is that despite the behaviour of 
L1 and L2 neither of the parametersyl, Y2 and Wl/2 vary 
markedly from the magnitudes seen for corresponding pure 
Gaussian distributions, for comparable values of Ox and q~. 

function H 3 which is a convolution of a Gaussian and dis- 
placed exponential form. 

H3(Y ) : 

OO 

f ltl(p)n2(Y - p)dp 
_ _ 0 0  

where 

H I ( Y ) -  Oy(2~)l/2 exp - 

1 (Y-- Y0) 
H2(Y) = exp 

Oy, Oy, 

H3(Y) does not have a simple analytical form. However in 
the general expression 3, H3(Y) is only involved as a Fourier 
transform. We can therefore use the well known relationship 
for the transform of a convolution product. 

~Z-(H3) -~-(H1) ~q- (H2) 

where ~Z'is the Fourier transform operator. 
This transform has the property that if either o3, or Oy. 

approach zero, then~'~(H3) degenerates into the transform 
of either a pure exponential or a pure Gaussian distribution. 
The resulting expression for I(s) obtained by using this form 

FINITE LAMELLAR STACK MODEL 

We now consider the type of model where the number of 
lamellae in each stack is reduced to a level that the term 
I c ( s ~  can no longer be neglected. Hosemann has demon- 
strated that this term introduces a central scatter around the 
main beam and also has the effect of broadening the diffrac- 
tion peak given by the IB(S) term. 

The presence of the central scatter poses a difficulty in 
our task of comparing correlation functions, since the 
Fourier transform of this added scatter causes the whole 
pattern to be raised and distorted, thus making it impossible 
to determine the parametersy 1 and Y2 needed for model 
comparison. However since much of the central scatter is in 
the range of s that is experimentally behind the backstop, we 
have modified the theoretical curves by arbitrarily imposing 
an artificial backstop in the region s < 0.5. The intensity 
function has then been replaced in this region with an extra- 
polated s 2 curve, in the same way as the experimental inten- 
sity curves. This procedure then gives well behaved correla- 
tion functions. Examples of the curve parameters obtained 
for this model are shown in Table 3. For simplicity, 
Gaussian statistics are used in equation (3), where oy/Y  = 
oz/Z. 

It will be noted that there is little change from the infinite 
stack case until N is reduced to 10 lamellae per stack, and no 
exceptional change occurs until N is below 5. Table 3 clearly 
shows the increase in peak broadening as N is decreased. 
There is also a corresponding decrease in Yl and a particularly 
marked decrease in Y2. 
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It is also of interest to compare the results for N = o o  

with the corresponding results in Table 1, in order to note 
the effect of the 'experimental' backstop at s = 0.5. Clearly 
this cut-off will not change the halfwidth of the I(s) curve 
itself. However it does have the effect on the transform of 
significantly increasingyl but leaving Y2 relatively unaltered. 

VARIABLE STACK MODEL 

We now consider the situation where there is a fluctuation 
in the overall composition of the stacks. The net intensity 
can no longer be represented by a single statistical stack but 
will be the average of the whole stack distribution. 

There are many ways in which a fluctuation between 
stacks can be envisaged. Here a specific model will be con- 
sidered in which the overall local crystallinity varies from 
one stack to another. This situation could arise due to an 
inhomogeneity in polymer composition giving rise to frac- 
tionation effects, or due to a variation in crystallization con- 
ditions through the sample. 

We will describe the variation in crystallinity in the sample 
by the normalized distribution function P(¢) which gives the 
probability of a given crystallinity occurring in a given volume 
of stacks. The net observed intensity per unit volume will 
be the volume-average of the intensities of the component 
single stack intensities. Thus 

trend when samples from the same polymer family are crys- 
tallized under differenct conditions. 

Results in the literature also often show this trend 9. It 
has the implication that the long period is largely governed 
by a characteristic amorphous thickness. 

This model has been evaluated for cases where P(0) is a 
Gaussian distribution. In order to avoid unrealistic situations 
and singularities when 0 -+ 1.0, the numerical integration was 
curtailed to 0 < 0.95. For simplicity, the intrinsic intensity 
for each component stack, I(s,O), was taken to be the pure 
Gaussian case with: 

oy /Y  = oz/Z 

Typical results are listed in Table 4. The introduction of 
stack dispersity produces a decrease in both y 1 and Y2. The 
most dramatic effect is the proportionally larger decrease of 
Y2 with respect toy  1 . This trend is linked with a marked in- 
crease in halfwidth WI/2 of the intensity function. The de- 
crease in Y2 can be considered to be the result of taking the 
volume-average of the correlation functions from different 
stacks in which the first positive correlation peaks tend to be 
cancelled out by the negative troughs from other differing 
stacks. 

EXPERIMENTAL 

I(s) = f I(s,O) "P(¢)d0 

The overall crystallinity 0- of the system and the dispersion 
u c of the stack crystallinity will be given by: 

= f OP(O)do 

Two grades of LDPE from ICI were used. Polymer A had an 
MFI = 0.3 and a reference density of 0.924 kg/m 3, while 
Polymer B had an MFI = 2.0 and a reference density of 
0.920 kg/m 3. 

The samples prepared from these polymers are listed in 
Table 5. The slow cooled samples were made by compres- 
sion moulding 1 mm thick sheets between glazing plates at 
160°C and then cooling the p'ress at a controlled rate. The 
quenched samples were made by pressing 0.3 mm sheets at 
160°C and quenching into a CO2/acetone mixture. The 
low-angle X ray scatter J(s) was obtained from a slit colli- 
mated Kratky Camera and recorded with a CGR Linear 
Position Sensitive Detector and an Elliott Processor Unit. 

This proposed crystallinity fluctuation is insufficient to spe- 
cify the model fully. It is necessary to make a further 
assumption concerning how the overall period in each stack 
is related to the local stack crystallinity. Let us therefore 
consider the specific case where the average amorphous 
thickness is constant for all lamellar stacks and independent 
of the local crystallinity of the stack, so that the local long 
period will therefore be larger in those stacks where the 
crystallinity is higher. I f Z  0 is this common average amor- 
phous thickness, then the local long period will be given by: 

~(qg) = No~ (1 - O) 

It is easy to show that the overall number-average long 
period of the whole system is simply: 

x = Z0/(1 - 

The assumption of a constant average amorphous thickness 
is not entirely arbitrary, since we have often observed the 

Table 4 Parameters for variable stack model 

0 (Ix Oc L1 L2 Yl Y2 Wl/2 

0.5 0.1 0 1.00 1.0 0 0.77 0.69 0.06 
0.5 0.1 0.15 1.05 0.95 0.52 0.18 0.65 
0.5 0.1 0.2 1.04 0.95 0.45 0.103 0.75 
0.5 0.1 0.25 1.04 0.93 0.41 0.066 0.83 

0.5 0.15 0 1.01 1.00 0.65 0.53 0.15 
0.5 0.15 01 1.06 1.02 0.53 0.265 0.51 
0.5 0.15 0.15 1.08 1.02 0.46 0.16 0.68 
0.5 0.15 0.2 1.08 1.02 0.42 0.101 0.78 
0.5 0.15 0.25 1.08 1.02 0.38 0 068 0.84 

0.5 0.2 0 1.03 1.02 0.54 0.38 0.26 
0.5 0.2 0.1 1.12 1.04 0.44 0.21 0.58 
0.5 0.2 0.15 1.14 1.05 0.40 013  0.74 
0.5 0.2 0.2 1.15 1.06 0.36 0.086 0.83 
0.5 0.2 0.25 1.18 1.06 0 34 0.065 0.87 

0.5 0.3 0 1.12 1.10 0.36 0.18 0.50 
0.5 0.3 0.1 1.22 1.15 0.32 0.125 0.71 
0.5 0.3 0.15 1.28 1.17 0.30 0.087 0.86 
0.5 0.3 0.2 1.29 1.21 0 28 0.062 0.93 
0.5 0.3 0.25 1.32 1.22 0.27 0.049 1.00 
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Table 5 Parameters from experimental curves 

Sample Cooling 
No. Polymer rate ~ L t  (nm) L2 (rim) Yl 

Estimated from 
variable stack model 

Y2 W,12 Ox ec 

1 A Quench 0.45 11.3 10.7 
2 A 1½°C/min 0.48 12.2 11.8 
3 A 6 ° C/hr 0.50 13.5 12.7 
4 B Quench 0.42 10.8 10.1 
5 B 1 ½o C/min 0.47 12.0 11.2 

0.46 0.14 0.69 0.175 0.15 
0.33 0.06 0.88 0.2 0.25 
0.30 0.05 0.96 0.2 >0.25 
0.41 0.10 0.85 0.2 0.175 
0.36 0.07 0.88 0.2 0.25 

A correc.tion for the continuous background was made by 
subtracting a constant background deduced from the asymp- 
tote at higher angles t3. The transition thickness E at the 
phase boundaries was then determined from a J ' s  3 versus s 2 
plot using the method of Ruland 14 and Vonk t3. The slit 
smeared intensities were then multiplied by a factor 

27r2E2s 2)  --1 
1 

3 

to correct them to what they would have been if the system 
had had sharp phase boundaries. These intensities were then 
desmeared and then multiplied by 4rrs 2 as in equation (1) in 
order to obtain the equivalent 'one-dimensional' scattered 
intensity. A smooth asymptotic curve of the form 1Is 2 was 
then fitted to the tail 9 and the initial part up to the backstop 
replaced by a curve of the form s 2. The experimental one- 
dimensional correlation function was then evaluated using the 
same fast Fourier transform analogue as used for the theore- 
tical cases. 

The main features of  the results are summarized in Table 
5. The values for volume crystallinity in this Table are based 
on density and X-ray crystallinity measurements. It will be 
noticed that as the crystallization cooling rate is decreased, 
Yl and particularly Y2 both decrease and the relative half- 
width increases, apparently indicating a decrease in long 
range order. 

COMPARISON WITH MODELS 

All the experimental samples have a crystallinity between 
0.4 and 0.6. This is the range over which the l(s) and 7(0 
curves are relatively insensitive to a difference in crystallinity. 
Hence for the purpose of a general comparison it is valid to 
compare the experimental results with theoretical calcula- 
tions based on ¢ = 0.5. 

For an initial sorting, it is useful to focus just on the curve 
parameters y l  and Y2 and to compare the experimental re- 
suits with Tables 1 and 2 for the infinite single stack type of 
models. The agreement is generally poor in that for a given 
match in Y l ,  the related experimental values o fy  2 are signi 
ficantly lower than the Y2 of the single stack models. This 
conclusion holds for cases where the crystalline and amor- 
phous thicknesses obey symmetrical Gaussian statistics, 
where they obey asymmetrical exponential statistics and 
where the statistics are mixed in all combinations of sym- 
metric and asymmetric distributions. The closest approach 
to experiment in this set is when either Oy or Oz become 
vanishingly small: e.g. compare sample 1 with oy = 0.299, o z = 
0.025 in Table 1. The plots of this comparison are shown 
in Figures 2 and 3. [The situation when Oz -~ 0 is also the 
one that Brown et al s found gave a good fit of correlation 

o 

"~ ° ° 
. m  
e'- 

~ o 

÷ ÷ 

I ÷ ~ I 

I0 20 30 
20 (mrad) 

Figure 2 Experimental intensity I(s) plot for sample 1, with super- 
imposed, scaled, theoretical points for: O, variable stack model, (~ = 
0.5, 0 x = 0.175, 0 c = 0.15; +, infinite stack model, ~ = 0.5, Oy = 
0.299, 0 z = 0.025 

1.0 

0 '5  

÷ 

÷ 

÷ + ÷ 

I I I 

5 IO 15 20 
Distance (nm) 

Figure 3 Correlation function for sample 1, with superimposed, 
s o l e d  theoretical points for: (3, variable stack model,  ~ = 0.5,  0 x = 

0.175, 0 c = 0.15; +, infinite stack model, ~)= 0.5, Oy = 0.299, (7 z = 

0 .025  

-0.5 

functions in their study of poly(tetramethylene oxide).] 
However although Y l and Y2 may be close, the agreement 
with I(s) curves is poor, the experimental value of W1/2 be- 
ing much higher than that of the models. A further criticism 
of this situation is that the theoretical I(s) curve goes to al- 
most zero intensity around s = 2.0. (This is a direct conse- 
quence of making o z -* 0 and can be regarded as a missing 
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, i 3' IO 20  o 4 0  
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Figure 4 Experimental intensity plot for sample 5, with superim- 
posed, scaled theoretical points for the variable stack model with 
¢ = 0.5, Ox = 0.2, Oc = 0.25 

order effect resulting from the interaction of the 'particle 
factor' with the 'lattice factor'~Z). Apart from these defi- 
ciencies in the l (s)  curve, the physical situation with either 
ay = 0 or o z = 0 is unrealistic for polymer crystals in that 
it implies that either the crystalline or amorphous thickness 
is invariant. 

Another situation where the infinite stack model gives a 
close approach to experimental values o f y l  andy2 is in 
Table 3 for the case when N ~ oo: e.g. compare sample 1 
with o x = 0.3, N =  oo.  This case is in fact identical to the 
entry forxy = o z = 0.212 in Table 1, with the important 
exception that the initial backstop region, s < 0.5, has been 
replaced with an s 2 curve. Again however the theoretical 
W1/2 is too small and there is poor agreement with the shape 
of the l (s)  curves. Both this and the previous example with 
Oz = 0 illustrate the difficulties of relying only on a cursory 
match of 3'(r) curves, and not also checking the l (s)  curves. 

Better success at matching all three curve parameters Yl, 
Y2 and W1/2 can be obtained using either the finite stack 
model (Table 3) or the variable stack model (Table 4) .  
Other details of the curves also show a better fit. Examples 
of comparative plots of samples 1 and 6 against scaled curves 
for the variable stack model are shown in Figures 2 and 5. 
Acceptable comparative plots can be obtained for both 
models with a suitable choice of parameters. However to 
do this for the finite stack model requires using values of 
N ~ 2, which is approaching the limit of the concept of a 
'stack' of lamellae. Order of magnitude estimates of the 
parameters needed to fit the variable stack model are given 
in Table 5. These values are consistent with an increase in 
stack dispersion as the cooling rate is decreased. 

DISCUSSION 

The above comparison indicates that the simple infinite 
stack type of models can be eliminated as appropriate 
models for LDPE. Although still imperfect, better fits can 
be obtained with either the finite stack or variable stack 
models. Purely as an exercise in curve fitting there is little 
to choose between them, although the variable stack model 
is marginally better. It is not possible from diffraction data 
alone, to conclude that either of these models are represen- 
tative of the real structure. However the two models can 
still be used to show the type of structural modification 

needed to simulate the observed diffraction behaviour and 
it is therefore worth considering further some of their 
implications. 

In order to approach the observed behaviour of our 
samples, the parameters of the finite stack model have to be 
set with o x > 0.25 andN~< 2. Taken literally, a stack of 
less than two lamellae is an arbsurdity. Even when viewed 
from the statistical point of view, the model presents con- 
ceptual difficulties. To be consistent with the experimental 
results, the model requires a x to increase and N to decrease 
as the crystallization cooling rate is slowed down. This im- 
plies an overall decrease in order at slower crystallization 
rates and is opposite to the norrrial expectations of a lamel- 
lar system. In principle it should be possible to use electron 
microscopy to distinguish stacks of two lamellar from the 
'infinite' stacks of the other models. 

According to the variable stack model, a lower crystalliza- 
tion rate implies an increase in stack dispersity o c but little 
change in lamellar dispersity o x. This trend could be ex- 
plained by the effects of molecular segregation. When 
samples cool slowly, the less branched molecules will tend 
to crystallize first giving lamellar stacks of higher crystallinity 
and longer mean period. These will be progressively followed 
by lamellar stacks containing more highly branched species 
giving lower local crystallinities and smaller long periods. In 
contrast, fast quenching will prevent such large scale mole- 
cular segregation and will give lower interstack dispersity. 
Therefore, purely on the grounds of expected molecular be- 
haviour, the basic principles of the variable stack model ap- 
pear to be more appropriate. There however is no reason 
why features from both the variable stack and finite stack 
should not be present in the same sample. 

In principle it should be possible to distinguish between 
these two model types from the asymptotic behaviour at 
zero angle. Using Gaussian statistics it can be shown from 
equation (4) that: 

lim l (s)  
s--+O 2 2 

(°.~ +°__Lz/ .~2 
-2rr2~p2(1- ~b)2 \ f 2  ~ 2 ]  

lim 1 s s 2 s--~[()" ] 
This relationship will hold for all models with 'infinite' stacks, 
including the variable stack model. For all practical purposes 
it follows from this relationship that the asymptote is mainly 
governed by the lamellar dispersity o x .  For the finite stack 
case, the intensity will start to follow the same tendency as 
for infinite stacks, but will then rapidly increase again as the 
central scatter from Ic(s ) becomes dominant. Although the 
experimental curves are limited by the incident beam backstop, 
estimates of the asymptotic trend indicate that for all samples 
o x is in the range 0.1 to O. 15. This is less than the estimates 
in Table 5 based on a match with the variable stack model, 
but it is more easily accomodated by it than by the finite 
stack model. The extent of the disagreement may be a func- 
tion of the specific variable stack model chosen. Other 
variable stack types may be better - e.g. if the lamellar dis- 
persity o x as well as the long period of each stack varied with 
crystallinity. 

It should be noted that it was the asymptotic behaviour 
that led Strobl and Muller 4 to conclude that LDPE must have 
a finite stack dispersity. They estimated that the fluctuation 
6L of the long period L between different stacks was 6L/L  ~- 
0.8. Translated to our specific variable stack model~ this deg- 
ree of dispersion is equivalent to o c ~- 0.2, i.e. close to the 
fitted values in Figures 2 to 5. 
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Figure 5 Correlation function for sample 5, with superimposed, 
scaled theoretical points for the variable stack model with ~ = 0.5, 
0 x = 0.2, 0 c = 0.25 

The presence of a variation in crystallinity between 
stacks can have consequences in the interpretation of other 
aspects of low-angle X-ray data. One important factor that 
would be affected is the overall scattering power as measured 
by the so-called "invariant'. For the variable stack model the 
one-dimensional form of the invariant will be: 

This shows that the deduced Bragg long period will be 
closer to the true number-average when the peak broadening 
is due to stack dispersion, than when it is solely due to 
lamellar dispersity. 

CONCLUSION 

The investigation has shown that it is more fruitful and less 
misleading to make comparisons using both I(s) and 7(r) 
curves rather than relying on just one of them. The compari  
sons have shown that the simple 'infinite' stack type of model 
is inappropriate for LDPE. The finite stack and variable stack 
type of models give much better fits to the experimental 
curves. Of these two: the implications and evidence favour 
the variable stack model as being more realistic. This how- 
ever does not mean that the specific details employed in the 
model are all correct but rather that the principle of a dis- 
persity of stacks coupled with the crystallinity fluctuation 
represent the type of characteristics of a one-dimensional 
model needed to describe the structure. These characteris- 
tics give a lower distortion to the position of the diffraction 
peak and thus give the satisfaction of implying that despite 
the very broad peak, the observed long period is closer to 
the true number-average period than would be implied by 
the simple infinite stack model. 

oo 

f I(s)ds = (Pc - pA)2 {~( 1 - ~)  - 02} C 

The magnitude of the invariant will therefore decrease with 
increasing o c and will be most affected when ¢ is either very 
large or very small. 

With regard to interpreting the long period, the presence 
of stack dispersity can have some beneficial consequences in 
interpreting the Bragg long period. Much attention with 
theoretical models has been given in the literature to the 
structural factors which can cause a distortion of the peak 
shape 2 and hence give a false impression of the average long 
period. The results in Tables I to 4 serve as a summary of 
some of these effects. In all the model calculations, the 
number-average long period of the lamellar stacks have been 
defined to be unity. Thus the observed values of L1 and L2 
in the Tables indicate the variations in distortion introduced 
by the various choices of model parameters and statistics. It 
will be noted that for ¢ = 0.5 and W1/2 ~ 0.7, that the degree 
of distortion in Table i for the infinite stack model is high 
(~25%) whereas in Table 4 for the variable stack model the 
distortion is lower (~ 10%). 
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